
Advances in Computer Science and Information Technology (ACSIT)
p-ISSN: 2393-9907; e-ISSN: 2393-9915; Volume 4, Issue 3; April-June, 2017, pp. 155-160
© Krishi Sanskriti Publications
http://www.krishisanskriti.org/Publication.html

ASCII Based Algorithm for High Level Cloning
Manu Singh1 and Vidushi Sharma2

1,2School of ICT Gautam Buddha University, Greater Noida, Uttar Pradesh, India
E-mail: 1manu_akumar@yahoo.co.in, 2vidushi@gbu.ac.in

Abstract—The current research in clone detection is now focusing
on developing better algorithm for high level clones. Many
algorithms have been proposed but more efficient and robust
methods are needed. Pattern matching is one of the promising areas
which show potential in research of computer science. The
Structural clones of high level clones comprised lower level smaller
clones with similar code fragments. In this repetitive occurrence of
simple clones in a file may prompt higher file level clones. The
proposed algorithm detects clones at higher level of abstraction like
file and also detects repetitive patterns in same file. To identify DNA
sequences there are various pattern matching algorithms used in
genetic area. In the proposed work an ASCII based sequential
multiple pattern matching algorithm gives better performance when
compared with some of the existing algorithms. The present method
avoids superfluous DNA comparisons as a consequence the number
of comparisons and character par comparison proportion gradually
decline and overall performance increments.

Keywords: Pattern matching, ASCII based, high level clone, file
clone.

1. INTRODUCTION

A software system is constantly changing, and consistent
maintenance is required to help it adapt to the new changes.
Designs, software upgrades, compilers, hardware upgrades
and so forth all influence the working of software. Because of
standard adjustments in code, redundancies happen in code
and programming will be more mind boggling and
troublesome in keeping up. Now and then this excess is known
as cloning. Cloning may occurs at various abstraction levels
and have unusual source [1]. Literature study portrays half
cloning in the source codes [2]. In literature several techniques
used to identify simple clone fragments [3] but detection
clones at higher levels remains a promising area till now. One
of the promising area in clone detection is pattern matching.
pattern matching is the act of checking the occurrences of a
particular pattern of characters in a large file. This paper
investigate the applicability of a new technique of pattern
matching approach called ASCII based Pattern Matching
algorithm, for detection of high level clone in source code.
High Level Clones are classified [4] in structural clone,
concept clone, behavioural clone [5] and domain model clone.
This classification depicts that structural clones are formed by
similar fragments of code at low level. This approach avoids
lengthy comparisons in string sequence and reduces the effort

for each character comparison at each attempt. The proposed
algorithm gives better results as compared to other algorithms.

The rest of the paper is organized as follows. Proposed
algorithm is explained in section II. Experimental results are
presented in section III. Concluding remarks are given in
section IV.

2. RELATED WORK

There are various string matching techniques which mainly
deal with problem of identifying occurrences of a substring in
a given string or locate the occurrences of specific pattern in a
sequence. In this section we explore these different types of
string matching techniques. Some techniques are based on
algorithms of exact matching in string, such as Naïve string
search, Brute-force algorithm, Bayer-Moore algorithm, Knuth-
Morris-Pratt algorithms [6],[7] and some are based on
approximate string matching algorithms, dynamic
programming is mostly used approach. In IBKPMPM [8]
choose the value of k and divide both the string and pattern
into number of substring of length k, each substring is called
as a partition. We compare all the first characters of all the
partitions, if all the characters are matching while we are
searching then we go for the second character match and the
process continues till the mismatch occurs or total pattern is
matched with the sequence. In Index based forward backward
multiple pattern matching technique [9] the elements in the
given patterns are matched one by one in the forward and
backward until a mismatch occurs or a complete pattern
matches. In the MSMPMA [10] technique the algorithm scans
the input file to find the all occurrences of the pattern based
upon the skip technique. Index is used as the starting point of
matching; it compares the file contents from the defined point
with the pattern contents, and finds the skip value depending
upon the match numbers (ranges 1 to m-1). In IBSPC [11]
indexes has been used for the DNA sequence. After creating
the index the algorithm will search for the pattern in the string
using the index of least occurring character in the string. In
Index Based Algorithm [12], on the basis of frequently occur
character index table is created and then align pattern with
string and matched occurrence of patterns with multiple times
one by one from left to right in the file. This paper proposed
the most efficient approach for finding similarity between

Manu Singh and Vidushi Sharma

Advances in Computer Science and Information Technology (ACSIT)
p-ISSN: 2393-9907; e-ISSN: 2393-9915; Volume 4, Issue 3; April-June, 2017

156

multiple pattern, till date. To further increase the performance
of pattern matching an ASCII based multiple pattern matching
algorithm using ASCII value comparison between pattern and
substring is proposed. It is a simple approach for finding
multiple occurrences of patterns from a given file. This
algorithm gives better results when compare it with existing
algorithms. This approach provides best results with the DNA
sequence dataset. Proposed algorithm is implemented and
compared with existing algorithms. Experimental results of
applying the technique to DNA sequences show the
effectiveness of the proposed technique.

3. PROPOSED ALGORITHM

3.1 ASCII Based Multiple Pattern Matching Algorithm –

Input: String S of n characters and Length of pattern P of m
characters

Output: The number of occurrences of Pattern in String, its
location and the number of characters compared.

Step 1: [Initialization of variables & Index array]

 Integer i:=0 and ctr:=0, subStr[m], start:=0

 Step 2: [Extract Pattern P from String S]

 For i=0 to pattenLength

 P[i]=S[i]

 If (stringLength<patternLength)

 Exit

 Endif

Step 3: [Calculate Ascii value of Pattern]

Step 4: LOOP till End of File

Step 5: End = start + patternLength – 1;

Step 6: Extract substring subStr from String S

 For i=start to End

 subStr[i]=S[i]

Step 7: [Calculate Ascii value of substring]

Step 8: [compare the ascii sum of string S and ascii

 sum of pattern P]

 If substr_asc == patternasc

Step 9: [If they are equal compare individual characters of
string and pattern.]

 For i=start to End

 num=num+1

 If (substr(i) == P(i))

 found=1;

 continue;

 else

 break;

 endif

 End

Step 10: if found==1

 [Increment ctr with 1]

 print (found at location, start)

 endif

Step 11: [Increment start with 1]

 End

Step 12: print (Total Pattern Found, ctr)

Step 13: END

3.2 Working Example –

Assume there is a string to understand the proposed algorithm

S= R G B G R W B B B G R W B R R G B G R W W B G R
W B G B W of 29 characters

Divide the string into 5 characters in each substring. And
calculate the ascii value of all substrings. Suppose the given
pattern is P.

P = R G B G R of 5 characters

Compare the ascii value of both the pattern and substring, if
match then align the pattern and substring and compare
character by character

S= R G B G R W B B B G R W B R R G B G R W W B G R
W B G B W of 29 characters

P =R G B G R

The first character matches then it compares the second
character of the pattern.

S= R G B G R W B B B G R W B R R G B G R W W B G R
W B G B W of 29 characters

P =R G B G R

The second character also matches then it compares the third
character.

S= R G B G R W B B B G R W B R R G B G R W W B G R
W B G B W of 29 characters

P =R G B G R

The third character also matches then it compares the fourth
character.

ASCII Based Algorithm for High Level Cloning 157

Advances in Computer Science and Information Technology (ACSIT)
p-ISSN: 2393-9907; e-ISSN: 2393-9915; Volume 4, Issue 3; April-June, 2017

S= R G B G R W B B B G R W B R R G B G R W W B G R
W B G B W of 29 characters

P =R G B G R

The fouth character also matches then it compares the fifth
character.

S= R G B G R W B B B G R W B R R G B G R W W B G R
W B G B W of 29 characters

P =R G B G R

All the characters are matched, so the pattern is found at
position 1.

Next the algorithm aligns the pattern with next character in
string.

S= R G B G R W B B B G R W B R R G B G R W W B G R
W B G B W

P= R G B G R

Continue till ascii sum of pattern and ascii sum of substring
does not match.

S= R G B G R W B B B G R W B R R G B G R W W B G R
W B G B W

P= R G B G R

Ascii value of both the pattern and substring match so start
comparing the pattern and substring character by character

S= R G B G R W B B B G R W B R R G B G R W W B G R
W B G B W

P= R G B G R

The first character matches then it compares the second
character of the pattern.

S= R G B G R W B B B G R W B R R G B G R W W B G R
W B G B W

P= R G B G R

The second character not matches with the second character of
the pattern. Now continue

S= R G B G R W B B B G R W B R R G B G R W W B G R
W B G B W

P= R G B G R

Ascii value of both the pattern and substring match so start
comparing the pattern and substring character by character

S= R G B G R W B B B G R W B R R G B G R W W B G R
W B G B W

P= R G B G R

The second character not matches with the second character of
the pattern. Now continue

S= R G B G R W B B B G R W B R R G B G R W W B G R
W B G B W

P= R G B G R

Ascii value of both the pattern and substring match so start
comparing the pattern and substring character by character

S= R G B G R W B B B G R W B R R G B G R W W B G R
W B G B W

P= R G B G R

S= R G B G R W B B B G R W B R R G B G R W W B G R
W B G B W

P= R G B G R

S= R G B G R W B B B G R W B R R G B G R W W B G R
W B G B W

P= R G B G R

S= R G B G R W B B B G R W B R R G B G R W W B G R
W B G B W

P= R G B G R

All the characters are matched, so the pattern is found at
position 15. Next the algorithm aligns the pattern with next
character in string.

S= R G B G R W B B B G R W B R R G B G R W W B G R
W B G B W

P= R G B G R

Ascii value of both the pattern and substring match so start
comparing the pattern and substring character by character

S= R G B G R W B B B G R W B R R G B G R W W B G R
W B G B W

P= R G B G R

The second character not matches with the second character of
the pattern. Now continue

S= R G B G R W B B B G R W B R R G B G R W W B G R
W B G B W

P= R G B G R

Ascii value of both the pattern and substring match so start
comparing the pattern and substring character by character

S= R G B G R W B B B G R W B R R G B G R W W B G R
W B G B W

P= R G
B G R

The second character not matches with the second character of
the pattern. Now continue

S= R G B G R W B B B G R W B R R G B G R W W B G R
W B G B W

Manu Singh and Vidushi Sharma

Advances in Computer Science and Information Technology (ACSIT)
p-ISSN: 2393-9907; e-ISSN: 2393-9915; Volume 4, Issue 3; April-June, 2017

158

P= R G B
G R

The ASCII values doesn’t match and the pattern is aligned
with the next substring of the string

Now the pattern is moved to the next index and the
comparison does not occur and algorithm terminates because
the length of substring is less than the pattern length.

Now at the end of the algorithm the total 2 Patterns occurred
in the String. By above example we can conclude that
comparing ascii values reduces the number of comparisons.

4. EXPERIMENT AND RESULT ANALYSIS

The DNA Sequence data has been taken from the Multiple
Skip Multiple Pattern Matching algorithm MSMPMA[10] for
testing the proposed algorithm. After implementation of the
proposed ASCII based multiple pattern matching algorithm for
the 1024 characters and finding the no of occurrences and no.
of comparisons, It has been concluded that the number of
comparisons reduces as the pattern size of DNA increases and
are shown below in the Table 1.

Table 1: Experimental Results of Proposed Algorithm

Pattern No. of Occurrence No. of Comparison
A 259 516

AG 53 278
CAT 10 131

GACA 6 127

By using the proposed algorithm different patterns are
analyzed and the graph is plotted by using these results as
shown in Fig. 1.

Fig. 1: Analysis based on increased pattern size

4.1 Comparison of different algorithms using DNA
Sequence

As we have collected the data for various existing algorithm
and drawn the comparative analysis with respect to the various
existing algorithm. The results of proposed ASCII based

algorithm for DNA Sequence with different pattern size were
compared with Brute Force, MSMPMA[10], Bayer
Moore[14], IFBMPM[9], and index based Algorithms[12] are
shown in the Table 2.

Table 2: Comparison of different algorithms using Different
pattern size

PATTER
N

Brut
e
Forc
e

MSMPM
A

Bayer
Moor
e

IFBMP
M

Index
Base
d

ASCI
I
Based

A 1024 1024 1024 518 774 516
AG 1284 1230 734 624 414 278
CAT 1318 1298 607 567 201 131
GACA 1376 1359 504 614 272 127

When compared the proposed algorithm with some of the
other algorithms the following experiments has been observed.
Fig.2 shows the number of comparisons made for different
algorithms to the single pattern of length 1. For a single
pattern “A” the proposed algorithm takes 516 comparisons
whereas all the other algorithms like Brute force, MSMPMA,
Bayer Moore[14] take 1024 comparisons, index based taken
774 comparisons and IFBMPM takes 518 comparisons.

Fig. 2: Experimental results of different algorithms for a single

character pattern size

Fig. 3 shows the number of comparisons made for different
algorithms to the pattern of length 2. The pattern “AG”, in the
proposed algorithm takes 278 comparisons where as all the
other algorithms like Brute-force, MSMPMA, Bayer Moore,
IFBMPM and Index based algorithms takes 1284, 1230,734,
624 and 414 comparisons respectively. We are reducing the
comparisons by using the ASCII based technique.

0

100

200

300

400

500

600

No. of
Occurance

No. of
Comparisons

A

AG

CAT

0

200

400

600

800

1000

1200

1400

No. of Comparisons

ASCII Based Algorithm for High Level Cloning 159

Advances in Computer Science and Information Technology (ACSIT)
p-ISSN: 2393-9907; e-ISSN: 2393-9915; Volume 4, Issue 3; April-June, 2017

Fig. 3: Experimental results of different algorithms for a
pattern size “2”

Fig. 4 shows the number of comparisons made for different
algorithms to the pattern of length 3. The pattern “CAT”, in
the proposed algorithm takes 131 comparisons where as all the
other algorithms like Brute-force, MSMPMA, Bayer Moore,
IFBMPM and Index based algorithms takes 1318, 1298, 607,
567 and 201 comparisons respectively.

Fig. 4: Experimental results of different algorithms for a
pattern size “3”

Among them proposed ASCII based algorithm gives very
good performance in reducing the number of character
comparisons compared with other popular methods and
existing algorithms. Towards X-axis we have taken algorithm
names and towards Y-axis show the total number of
comparisons. It can be concluded through experiments that
proposed algorithm:

 Decreases number of comparisons as pattern size
increases.

 Take less time as lesser number of comparisons.

 Take less memory space as less memory storage
required for comparison.

 Appropriate for large size input file.

5. CONCLUSION

We suggested a new algorithm which can be use for pattern
matching in DNA sequences. This approach is suitable for
high level cloning detection as it works with large size of input
sequence. Dependent upon the experimental work our
methodology gives beneficial execution related to DNA
sequence dataset. Our suggested algorithm minimizes the total
number of comparison when compared with the some of the
best known popular algorithm.

REFERENCES

[1] Basit, H. A., Jarzabek, S., “A Case for Structural Clones”,
International Workshop on Software Clones, 2009.

[2] Baker, B. S., “On Finding Duplication and Near duplication in
Large Software System”, Proceedings of 2nd IEEE
Conference of Reverse Engineering, 1995.

[3] William S. Evans, Christopher W. Fraser and Fei Ma, “Clone
Detection via Structural Abstraction”, Software quality
journal Vol. 17, No. 4, 2009.

[4] Singh, M., Sharma, V., “High Level Clones Classification”
International Journal of Engineering and Advanced
Technology (IJEAT) ISSN : 2249 – 8958, Vol. 2, Issue - 6,
August 2013.

[5] Singh, M., Sharma, V., “Detection of Behavioral Clone
International Journal of Computer Applications (0975 –
8887) Vol. 102 – No.14, 2014.

[6] Bayer R. S., Moore, J. S., “A Fast String Searching
Algorithm”, Communications of the ACM, pp. 762-772
,1977.

[7] Knuth D., Morris.J, Pratt.V.R., “Fast Pattern Matching in
Strings”, SIAM Journal on Computing Vol. 6 (1), 1977.

[8] Bhukya, R., Somayajulu, D.,”An Index Based KPartition
Multiple Pattern Matching Algorithm”, Proc. Of
International Conference on Advances in Computer Science
2010 pp 83-87.

 [9] Bhukya, R., Somayajulu, D.,“An Index Based Forward
Backward Multiple Pattern Matching Algorithm”, World
Academy of Science and Technology. June 2010, pp347-
355

0

200

400

600

800

1000

1200

1400
No. of Comparisons

0

200

400

600

800

1000

1200

1400

No. of Comparisons

Manu Singh and Vidushi Sharma

Advances in Computer Science and Information Technology (ACSIT)
p-ISSN: 2393-9907; e-ISSN: 2393-9915; Volume 4, Issue 3; April-June, 2017

160

 [10] Ziad A.A Alqadi, Musbah Aqel & Ibrahiem M.M.EI Emary,
Multiple Skip Multiple Pattern Matching algorithms. IAENG
International Journal of Computer Science 34:2.

[11] Bhukya, R., Somayajulu, D.” Index Multiple Pattern
Matching Algorithm using DNA Sequence and Pattern
Count”, International Journal of Information Technology and
Knowledge Management July-December 2011, Volume 4,
No. 2, pp. 431-441

[12] Singh, M., Sharma, V., “Index based detection of file level
clone for high level cloning”, International Journal of
Computer Science Engineering and Information Technology
Research (IJCSEITR) ISSN(P): 2249-6831; ISSN(E): 2249-
7943 Vol. 5, Issue 4, Aug 2015, 63-70

